
J O U R N A L  O F  M A T E R I A L S  S C I E N C E  16  ( 1 9 8 1 )  2 2 0 5 - 2 2 1 7  

Strength and fracture surface energy of 
phase-separated glasses 

N. M I Y A T A ,  H. J INNO 
Department of Industrial Chemistry, Faculty of Engineering, Kyoto University, 
Sakyo-ku, Kyoto 606, Japan 

F lexu ral strength and fractu re surface energy were determined for lead borate glasses 
whose compositions lie in the immiscible region of the PbO-B203 system. The micro- 
structural characterization indicated that the glasses are typical particulate composites 
which consist of two immiscible phases. For the glasses whose microstructure consists 
of PbO-rich particles/B203-rich matrix (B203-rich side of the miscibility gap), the frac- 
ture surface energy was found to decrease with increasing second-phase particles. To 
explain this behaviour, a crack propagation model in a brittle composite containing 
"penetrable" particles was proposed. On the other hand, for the glasses whose micro- 
structure consists of B203-rich particles/PbO-rich matrix (PbO-rich side of the miscibility 
gap), an increase in fracture surface energy with volume fraction of dispersed particles 
was observed. This phenomenon could be best explained by Lange-Evans theory of 
fracture in brittle composites containing "impenetrable" particles. It was concluded that, 
when the critical crack size in a non-dispersed host glass is much larger than the particle 
size, the crack size in particulate composites is invariant with microstructure and also 
that the variation of strength results entirely from the variation of fracture toughness. 

1. I n t r odue t i on  
It has been suggested that second-phase dispersions 
in a brittle material can increase fracture surface 
energy and fracture strength. The increase in frac- 
ture surface energy in some brittle particulate 
composites has been related tb the change in crack 
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shape caused by impedance of the crack front by 
the second-phase obstacles. Lange [1] proposed, 
based upon a "line tension concept", a mechanism 
of the momentary pinning of the moving crack 
front by obstacles, and provided an expression for 
the fracture surface energy of a brittle particulate 
composite. Evans [2] elaborated this theory and 
calculated the line tension contribution to the 
fracture surface energy as a function of the ratios 
of the obstacle dimensions and the obstacle 
spacing, where the obstacles can be considered 
"impenetrable". He concluded that line tension 
may be the major contribution to the increase in 
fracture surface energy of brittle matrix/brittle 
particle composites. It has been shown, on the 

other hand, that an array of non-bonded particles 
or "soft" particles such as pores can still impede a 
crack motion, which may lead to an increase in 
fracture surface energy. Ahlquist [3] and Green 
et al. [4-7] postulated that this effect is a result 
of localized crack blunting. 

However, second-phase dispersions must have a 
variety of microstructural effects and they can 
also lower fracture surface energy and strength [8]. 
General reduction of fracture surface energy by 
randomly distributed pores in brittle materials is a 
typical example. Second-phase particles (or pores) 
can act as stress concentrators in particulate com- 
posites when elastic moduli and thermal expansion 
coefficient of particles are different from those of 
the matrix. It is then possible that localized stress 
fields around and within the particles determine 
the fracture path and aid, in certain circumstances, 
crack propagation which results in a lowering of 
the fracture surface energy�9 The Lange-Evans 
theory ignores the presence of such stress fields 
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and failure mechanisms, and hence can not explain 
the reduction of fracture surface energy by 
dispersed phases. 

It is the purpose of the present investigation, by 
concentrating upon one particular phase-separated 
glass system, to gain further understanding of the 
mechanisms whereby fracture behaviour of brittle 
materials can be modified by second-phase 
dispersions. 

2. Experimental procedure 
2.1. Materials 
The samples selected for study were lead borate 
glasses whose compositions lie in the immiscible 
region of the PbO-B203 system. This system has 
one of the best characterized immiscible phase 
boundaries, which lies between about 1 and 
44wt% PbO [9]. Phase-separation characteristics 
in this system have been investigated by several 
authors [9-11]. It has been shown that the 
microstructures observed at all compositions 
within the miscibility gap consist essentially of 
spherical particles of one phase in a continuous 
matrix of the other phase [10, 11]. 

The glass samples containing 0 to 45 wt % PbO 
were prepared. Calculated amounts of PbO and 
dehydrated B203 were thoroughly mixed in a 
mortar. The batches were then melted and stirred 
in platinum crucibles. To ensure homogeneity, the 
samples were finely crushed and remelted. After 
repeating this process two or three times, the 
samples were cast in stainless steel moulds into 
both rectangular plates and rectangular bars for 
each type of measurement. The samples were then 
heat-treated at temperatures near their annealing 
points for 30 min. 

2.2. Micros t ruc ture  charac te r iza t ion  
Microstructures of fracture surfaces of the samples 
were determined using replication electron 
microscopy. Fresh fracture surfaces were etched 
for 10 sec in I%HF solutions. The volume fraction 
and particle diameter of dispersed second-phase 
in each sample were evaluated for the replica elec- 
tron micrographs by Fullman's technique [12]. 
Densities were determined by hydrostatic weigh- 
ings in kerosene relative to a silica standard. 
Following theoretical expressions relating the 
volume fraction of PbO-rich phase to density and 
composition [10], volume fractions of the PbO-rich 
phase in the samples were calculated and compared 
with those evaluated from electron micrographs. 

2.3. S t rength  measu remen t  
Flexural strength was measured using rectangular 
bars 8 mm x 4 mm x 40 mm. Measurements were 
made with a testing machine using three-point 
loading over a 32 mm span. All measurements were 
made in air at room temperature at a loading rate 
of 0.5mmmin -1. Six to ten specimens were 
fractured for each PbO content. 

2.4. Fracture toughness and fracture 
surface energy determinations 

2.4. 1. Fracture toughness Kic 
Fracture toughness values were determined using 
the three-point bend test of a single-edge-notched 
beam (SENB) along with the Vickers indentation 
technique. The latter method has been developed 
over the last few years based upon a fracture 
mechanics analysis of the indentation fracture 
problem [13-17]. The applicability of the inden- 
tation technique to fracture toughness evaluation 
of the present phase-separated glasses has recently 
been examined by the authors [18]. The inden- 
tation method was used to obtain toughness values 
in the lower PbO composition range in which 
SENB specimen fabrication is rather laborious and 
difficult. 

2.4.1.1. Three-point bend test. Specimens for the 
three-point bend test were prepared in the form 
of rectangular bars 8mm x 4mm x 40ram. One 
40 mm edge of each specimen was V-notched with 
a diamond wheel and a stable sharp crack was 
induced from the notch by application of a solder- 
ing iron tip to the specimen surface just ahead of 
the notch. Pre-crack lengths were measured by 
optical microscopy. Specimens were tested in 
three-point bending over a 32 mm span at a cross- 
head speed of 0.5mmmin -1. All measurements 
were carried out in air at room temperature. At 
least 6 specimens for each PbO content were 
tested, Fracture toughness values Kic were 
evaluated from specimen dimensions and fracture 
load using the equation given by Brown and 
Srawtey [19]. 

2.4.1.2. Indentation testing. Lawn and Fuller [14] 
have provided a simple formulation for the well- 
developed stage of indentation fracture in brittle 
materials. For the case where the indenter in a 
contact system is considered to be sharp, the 
fracture toughness can be related to the contact 
load and the crack dimension produced as follows: 
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kKic = P/(rr 3n "tan ff "c3/2), (1) 

where Kic is the fracture toughness, P is the load, 
c is the radius of a well-developed median crack, 

is the half-angle of the indenter (for a Vickers 
pyramid, ff = 74 ~ half-angle between opposing 
pyramid edges), and k is a small correction factor 
which is introduced by considering some effects 
associated with contact friction, presence of free 
surface, etc. in a given specimen/indenter system. 
"Equation 1 has enabled fracture toughness deter- 
minations to be made from simple pointed inden- 
tation tests. 

Specimens about 3 mm thick were used for 
indentation testing. They were freely polished on 
one surface in kerosene using alumina abrasives to 
a 0.3 pm finish. Indentation tests were performed 
using a Vickers diamond pyramid with a micro- 
hardness tester at room temperature under a dry 
N2 environment. For all the specimens, an indenter 
load of 1 kg was used. The surface traces of the 
cracks extending from the impression corners were 
measured by optical microscopy about 30min 
after the load was removed. At least 30 separate 
indentation patterns were produced on each 
specimen surface. Using Equation 1, relative tough- 
ness values kKic were evaluated from indenter 
load and produced crack dimension. Most of the 
glass samples under study were subjected to both 
the three-point bend test and the indentation 
testing. This enabled the correction factor k to be 
estimated by fitting the indentation data to tough- 
ness values obtained from the three-point bending 
technique. The value of k thus determined made 
it possible to obtain absolute values of fracture 
toughness of some samples on which only inden- 
tation testing was carried out. 

3. Results 
3.1. M ic ros t ruc tu ra l  character is t ics  
As shown by Shaw and Uhlmann [10], the present 
glassess are composed essentially of spherical 
particles of one phase in a continuous matrix of 
the other phase. For the B203-rich region (about 
1 to 20wt% PbO) within the miscibility gap, 
B2Oa-rich phase forms a continuous phase, while 
for the PbO-rich region (about 30 to 44 wt % PbO), 
the PbO-rich phase is continuous. These particulate 
microstructures in both regions can be confirmed 
by replication electron micrographs. Figs 1 and 2 
demonstrate fracture surfaces of the samples 
containing 10 and 40wt% PbO, respectively. 
Table I gives the volume fractions of the PbO-rich 
phase and the dispersed particle sizes determined 
from lineal analysis of electron micrographs for 
the compositions studied. 

For a binary system which contains a misibility 
gap between compositions xt and x2 (weight 
fraction), the bulk density p of the sample and the 
volume fraction r of the phase of the composition 
x2 can be expressed theoretically as [10] 

2.4.2. Fracture surface energy 
Assuming that conditions of plane strain are met, 
the effective fracture surface energy P is given by 
the equation [20] 

F - (1 -- v2)K~c, (2) 
2E 

where E is Young's modulus and v is Poisson's 
ratio. The elastic properties of the present phase- 
separated glasses in relation to their microstructure 
have been studied in detail by Shaw and Uhlmann 
[21]. Using their published data for Young's 
modulus and Poisson's ratio, the fracture tough- 
ness Kic was converted to the fracture surface 
energy F according to Equation 2. 

Figurel Fracture surface of 10PbO-90B20 ~ (wt%) 
sample, showing PbO-rich particles in a B203-rich matrix. 
Bar indicates 1 urn. 
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variation of volume fraction of the PbO-rich 
phase with weight per cent composition is com- 
pared in Fig. 4 with the prediction of Equation 4. 
In both Figs 3 and 4, theoretical curves are estab- 
lished taking the end-member values as xl = 0.01, 
x2 = 0.44, Pl = 1.85 and P2 = 3.30. As Shaw and 
Uhlmann [10] have already shown for the same 
glasses, experimental density and volume fraction 
data are found to agree quite well with the pre- 
dicted relations on both the B203-rich and 
Pb O-rich sides of the miscibility gap. 

Electron micrographs showed that glass samples 
having compositions in the central region of the 
miscibility gap (about 20 to 30 wt % PbO)present 
some complicating features in microstructure. 
Because of this, glass compositions in this region 
were excluded from the present investigation. 

Figure2 Fracture surface of 40PbO.60B~O 3 (wt%) 
sample, showing B20:rich particles in a PbO-rich matrix. 
Bar indicates 1/~m. 

PiP2 
p = (3) 

[(x -x~)l(x~ - x~)l(p~ - p~) + p~ 
and 

p,(x - X l )  
~b2 = , (4) 

(x -xl)6ol  - p2) + (x2-  xl)p= 

where Px and P2 are the densities of the end- 
member phases. In Fig. 3, the experimentally 
observed density-composition relation is com- 
pared with that predicted from Equation 3. The 

T A B L E I Structural characteristics of PbO-B203 glasses 

PbO (wt%) Volume Dispersed Microstructure 
fraction of particle 
PbO-rich size (/~m) 
phase 

0 - -  - -  

5 0.05 
10 0.13 0.17 
13 0.18 0.18 
17 0.25 0.20 

32 0.59 0.53 
36 0.71 0.35 
40 0.84 0.40 
45 - - 

PbO-rich spherical 
particles in a 
B 20a-rich matrix 

B20:rich spherical 
particles in a 
PbO-rich matrix 

3.2. S t rength  
Fig. 5 shows results of flexural strength measure- 
ments. As for glass compositions less than 5 wt % 
PbO, strength measurements were not carried out 
because rectangular bar specimens could not be 
fabricated in a controlled manner. In fact, in this 
composition range, the viscosity of  the melts 
becomes higher and some difficulties arise in 
preparing rectangular bar specimens having the 
dimensions required for the present strength 
measurements. 

It is seen that, in the B2Orrich region, the 
strength seems to decrease slightly with PbO con- 
tent, while in the PbO-rich region, a decrease in 
strength appears clearly with increasing PbO 
content. 

3.3. F rac tu re  surface  energy  
In Fig. 6, fracture toughness values KIc obtained 
from the three-point bend test as well as relative 
toughness values kKic determined by the Vickers 
indentation testing are plotted respectively against 
weight per cent PbO content. For glass samples 
having 0 to 10 wt % PbO, only Vickers indentation 
tests were carried out. For the present glasses, as 
described in our preceding paper [18], relative 
toughness values kKic obtained from the Vickers 
indentation technique were found to be clearly 
proport.ional to the toughness values determined 
by the three-point bend test. The correction factor 
k involved in the indentation testing can be 
estimated by fitting the indentation data to tough- 
ness values obtained from the three-point bend 
test. The value for k thus estimated was 0.57 for 
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Figure 3 Vartlation of density wi th composition over the 
immiscible region in the system PbO-B203. Solid curve 
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Figure5 Flexural strength of PbO-B203 immiscible 
glasses as a function of wt % PbO. 

glasses in the B2Oa-rich composition range*. 
Using this estimated value for k, absolute values 
for fracture toughness were evaluated for glass 
samples to which the three-point bending tech- 
nique was not applied. Table II gives the values of 
fracture toughness, Young's modulus, fracture sur- 
face energy and flexural strength. The values for 
Young's modulus were obtained by interpolation 
of the Young's modulus data over the miscibility 
gap published by Shaw and Uhlmann [21]. The 
values for fracture surface energy were calculated 
using Equation 2 taking Poisson's ratio as 0.26 
for the B203-rich side and as 0.27 for the PbO-rich 
side of the miscibility gap [2 t ]. 
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Figure 4 Variation of volume fraction of PbO-rich phase 
with composition in PbO-B=O3 immisc~le glasses. Solid 
curve represents Equation 4. 

4. Discussion 
4.1. Fracture path in the presence of 

localized stress fields around and 
within particles 

It has been demonstrated that differences in the 
thermal expansion and the elastic properties of the 

1.5 
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o,8 
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0.4 ' 1'0 ' 20 ' 3'0 ' 4'0 
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Figure 6 Fracture toughness of PbO-B203 immiscible 
glasses as a function of wt % PbO. 

*In our preceding paper [18], k was estimated at 0.61 by comparing the indentation data with those of the three-point 
bend test over the entire region of the miscibility gap. Strictly speaking, since the continuous phases in glasses are 
different from each other on the B2Oa-rich and PbO-rieh sides of the gap, a separate estimation of k should be made for 
each region. 
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T A B L E I I Mechanical property data for phase-separated PbO-B203 glasses 

PbO (wt%) Volume Fracture Young's Fracture Flexural 
fraction of toughness modulus* surface strength 
PbO-rich KIc(MNm -3/2 ) E(GPa) energy S(MPa) 
phase I'(Jm- 2) 

0 - 0.954"~ 17.3 
5 0.05 0.9264 18.7 

10 0.13 0.856J" 20.2 
13 0.18 0.828"~ 21.0 
17 0.25 0.833"~ 22.3 
32 0.59 1.59 31.2 
35 - - 34.5 
36 0.71 1.38 36.2 
40 0.84 1.33 44.5 
45 - 0.906 60.4 

24.5 
21.4 104 
16.9 101 
15.2 106 
14.5 98.3 
37.6 89.4 

- 104 
24.4 102 
18.4 86.3 
6.30 72.6 

*Data from Shaw and Uhlmann [21]. Each values were obtained by 
measured over the miscibility gap. 
tFracture toughness evaluated from Vickers indentation method. 

interpolation of their experimental modulus data 

particle and matrix can induce localized stress 
fields around and within particles. Here, the effect 
of  such stress fields on the fracture path in par- 
ticulate composites is discussed. 

4. 1. 1. Influence o f  localized stress fields 
due to thermal expansion mismatch 

A difference in thermal expansion coefficient 
between particle and matrix causes residual stresses 
within and around the dispersed particles when the 
composite cools down from its fabrication tem- 
perature. For the case where a spherical particle is 
embedded in an infinite medium, the stresses in 
the matrix at a distance r from the centre of  the 
particle are given by [22-24]  

and 

aoo = 2 \ r ]  (6) 
with 

(am -- % ) A T  

fl = l + u  m ~- l - -2vp  (7) 

2em ep 

where %r and oee are radial and tangential stresses, 
respectively, o~ is the thermal expansion coefficient, 
AT is the cooling range and R is the particle radius; 
the subscripts m and p refer to the matrix and 
particle, respectively. Within the particle, a uniform 
stress a = - ~ arises. It is then seen from Equations 
5 to 7 that, when a m < % ,  the particle is sub- 
jetted to a tensile stress and the matrix to radial 
tensile and tangential compressive stresses, and 
conversely, when am > % ,  the particle is subjected 
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to a compressive stress and the matrix to radial 
compressive and tangential tensile stresses. 

In Fig. 7, the effect of  residual thermal stresses 
on the fracture path in particulate composites is 
schematically illustrated. As the favoured orien- 
tation o f  the crack path should be that which 
maximizes the decrease in total system energy 
[25], the fracture path may also be influenced by 
the fracture surface energy of  each phase, Pm and 
Pp. For the case where a m > ap local tangential 
stresses around the particle will cause the radial 
crack formation during cooling or tend to turn the 
approaching crack front toward the particle. The 
crack is, therefore, favoured to intersect the 
particle. Microcrack formation in the radial direc- 
tion in the matrix will make it easier for the crack 
to go through the particle originally in com- 
pression. The crack will either go through or 
circumvent the particle when Fp > Pm, and will 
traverse the particle when Up < Pro. For the case 
where ap > am and Fp > Fin, the local radial 
tensile stresses around the particle will cause hemi- 
spherical microcrack formation during cooling or 
tend to repel the approaching crack front. The 
crack is, therefore, favoured to circumvent the 
particle in this case. For the case where ap > am 
and Fp < Pro, however, it is the tensile stresses in 
the particle which are responsible for micro- 
cracking and the crack will go through the particle. 

4. 1.2. Influence o f  stress concentrations 
due to elastic mismatch 

When an external load is applied to a composite, 
localized stress concentrations are also generated 
around and within the particles due to a difference 



RESI DUAL STRESSES 

OCm> (~p 

(3 
(Xm< O(p 

Figure 7 Formation of residual 
stress fields as a result of thermal 
expansion mismatch and their 
effect on fracture path (schematic). 

FRACTURE PATH 
Pm< [-'p 

(a) 

(b) 

Pm > 

-Ca-_ 

in elastic constants between the particle and 
matrix. Here, for simplicity, a two-dimensional 
case of  stress concentrations will be considered 
based upon Goodier's solutions [26] for a cylindri- 
cal inclusion in a plate. 

Under conditions o f  uniaxial tensile load, the 
radial and tangential stresses in the matrix are 
expressed as 

Orr = T2( 1 + cos 20) + 2T 

R 2 

and 

with 

Ooo = ~(1  - -cos  20) + 2T 

_ cos 201 (9) 

A = (1 -- 2vp)/~ m -- (1 -- 2vm)/.tp (10) 
4[(1 --  2vp)&n +/xp] 

and 
B = gm --Up (11) 

4[# m + (3 --  4Vm)/-qo ] ' 

where T is the applied tensile load, 0 is the angle 
between the tensile direction and the line joining 
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Figure 8 Stress concentration due to the presence of a cylindrical particle (a) stress concentration around and within 
a particle (#p/it m = 3). Radial tensile stress concentration occurs in the matrix in the direction of applied stress and 
(b) tangential tensile stress concentration around a particle (gp/#m = I/3). 

the centre of the inclusion and the point in 
question, #r~ and #p are the rigidity moduli for 
the matrix and inclusion, respectively. The stresses 
within the inclusion are given by 

a n d  Orr = T(F+ G cos 20) (12) 

aoo = T(F--  G cos 20) ( t3)  
with 

F = (1 - -  Um)/a p (14) 
(1 -- 2Vp)/arn +/ap 

and 
G = 2(1 -- Pm)/ap (15) 

/am + (3 -- 4Vm)/a p" 

It should be noted that the quantities A and B are 
always similar in magnitude over the range of 
Poisson's ratios of commonly used materials. The 
same is true for the quantities F and G. 

In the case of a high modulus inclusion 
(/h~ >/am), the stress concentrations arise around 
and within the inclusion. The radial tensile stress 
concentration occurs in the matrix in the orien- 
tation 0 = 0 ~ On the other hand, in the case 
of  a low modulus inclusion (/ap </am), the tangen- 
tial tensile stress concentration occurs in the 
matrix in the orientation 0 = 90 ~ In Fig. 8 stress 
concentration contours predicted from Equations 
8 to 15 are illustrated for (a) /~/#m = 3 and 
(b) /ap/gm = 1/3. It is assumed that Poisson's 
ratio for each phase takes equally the value 0.25. 
As seen from these examples, the regions of 
significant stress magnification are very localized. 

The localized stress fields due to elastic 
mismatch can induce microcracks associated with 
the particles during stressing of composites. They 
can also alter the orientation of a propagating 
primary crack. Fig. 9 illustrates schematically 
possible fracture paths which result from the dif- 
ferences in the elastic moduli and the fracture 
surface energies of  the particle and matrix. The 

crack will either go through or circumvent the 
particle, depending upon the differential fracture 
surface energy. For real particulate composites, 
stress concentrations due to elastic mismatch must 
be superimposed on the residual thermal stresses 
discussed in the preceding section. 

4.2. Interpretation of experimental results 
4.2. 1. Properties of the end-member phases 
Table III shows some mechanical properties for 
the end-member phases, estimated by inter- 
polation of the experimental data listed in Table II. 
Table III also includes thermal expansion coef- 
ficient data compiled by Takamori [27]. It is seen 
that one of the end-member phases, 1 wt % PbO 
glass, has lower Young's modulus, higher fracture 
surface energy and higher thermal expansion coef- 
ficient than the other end-member phase, 44wt % 
PbO glass. 

4.2.2. Glasses consisting of PbO-rich 
particles in a B203-rich matrix 

For glass compositions on the B2Oa-rich side 
within the miscibility gap, the fracture path is 
expected to go through the particles as shown 
schematically in Fig. 10a. Therefore, the Lange-  
Evans theory is inapplicable to the present case. 

Let us now consider the contribution of 
second-phase particles to the fracture surface 
energy when the particles are considered 
"'penetrable". I f  it is assumed that the crack will 
simply pass through the average area of each phase, 
stereological considerations lead to the following 
expression for the fracture surface energy of 
composites 

r = ( 1 - ~ ) r ~ + ~ r p  

= r m - ( r = - r p ) ~ ,  (16) 

where 4) is the volume fraction of the dispersed 
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TANGENTIAL STRESS 
CONCENTRATION AROUND 

A PARTICLE 

Figure 9 Possible fracture paths resulting 
from the elastic mismatch in particulate 
composites (schematic). Arrows indicate 
the direction of applied tensile load; 
shaded areas are stress-concentrated 
regions present prior to fracture. 

I +  
rm<rp 

Fro>__, I-"p 

second-phase. However, it is unlikely that the 
crack passes through the stereological average 
areas of  the two phases. It can be assumed that the 
crack will seek the path having a minimum area of  
matrix with a higher fracture surface energy than 
the particles. That is, the crack will suffer local 
deviations from its main plane, seeking preferen- 
tially the nearest-neighbour distances between 
particles. I f  this crack propagation mechanism 
occurs, the volume fraction of dispersed phase q~ in 
Equation 16 should be replaced by a local volume 
fraction of  dispersed particles qh which is defined as 

q~l = (/~3/A3) 3 , (17) 

where [,3 is the mean intercept length of randomly 

distributed particles and A3 is the average distance 
between nearest-neighbour pairs of  particles in a 
particular volume. For a dilute dispersion of ran- 
domly distributed spherical particles of  diameter 
D, the nearest-neighbour distance in a volume is 
approximated as [28] 

A 3 ~ 0 . 5 5 4 ( r r D 2 ) k / 4 )  1/3 , (18) 

where X is the mean free distance between par- 
ticles. The quantity X can be approximated as 
2D/(34~) for small volume fractions of  dispersed 
spheres [12]. Then A 3 can be written as 

A3 ~ 0.447D/491/3. (19) 

On the other hand, / `3 is given by 2D/3 for ran- 

T A B L E I I I Estimated mechanical data for the end-member phases 

End-member phase Fracture Young's Poisson's Fracture Thermal 
toughness modulus* ratio* surface expansion 
KIc(MNm -3/2) E(GPa) v energy coefficient]" 

r(jm_2) c~(10_6 o C-1) 

1 wt % PbO glass 0.947 17.5 0.26 23.9 ~ 14 
44 wt % PbO glass 0.960 56.5 0.27 7.56 ~ 7 

*After Shaw and Uhtmann [21 ]. 
]"After Takamori [27 ]. 
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PbO-RICH PARTICLES/B203-RICH MATRIX 

C(,m > C(p 0 
Em < Ep 

(o) 

Figure 10 Schematic of fracture 
path expected for (a) glasses 
consisting of PbO-rich particles/ 
B203-rich matrix, and (b) glasses 
consisting of B203-rich particles/ 
PbO-rich matrix. Arrows around 
each particle represent residual 
thermal tensile stresses in the 
matrix. Shaded areas represent 
stress-concentrated regions in 
the matrix produced by the 
elastic mismatch. 

B203-RI CH 

~m < otp 

Em > Ep 
["m < [-"p 

(b) 

PARTICLES/PbO-RICH MATRI X 

0 
domly dispersed spheres [12]. Hence it follows 
from Equation 17 

(D1 = ( I~ ' 3 /A3)3  = 3.33~b (20) 

and the fracture surface energy is given by 

P = (1 -- #h)rm + ~blrp 

= rrn - -  ( r rn  - -  Pp)~I 

= I' m -- 3.33(F m -- Pp)qS. (21) 

In Fig. 11, the reduced fracture surface energies 
obtained for the glasses consisting of PbO-rich 
particles/B203-rich matrix are plotted against the 
volume fraction of dispersed particles. The theor- 
etical prediction from Equation 21 is represented 
by a solid line, established by taking the values as 
Fm = 23.9 Jm -2 and Up = 7.56Jm -2. For compari- 
son, Equation 16 is also represented in the figure 
by a broken line. As expected, the experimental 
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data agree quite well with the theoretical predic- 
tion over the volume fraction range lower than 
0.15. The observed deviations in the volume frac- 
tion range higher than 0.15 can be attributed to 
the fact that Equation 18 or 19is no longer valid 
for larger volume fractions of dispersed particles. 

The size of the critical crack from which cata- 
strophic failure initiates can be estimated with 
knowledge of the strength and fracture toughness. 
By arranging Griffith's fracture equation, the 
critical crack size can be expressed as [29] 

Y2K~c 
a - 2S 2 (22) 

where a is the crack depth in the surface, S is the 
fracture stress and Y is a constant which depends 
on the crack and specimen geometry (Y = 1.12 for 
a surface half-penny crack [29]). Assuming that 
failure is initiated from a penny-shaped surface 
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Figure l l  Reduced fracture surface energy for glasses 
consisting of PbO-rich particles/B2Oa-rich matrix plotted 
against the volume fraction of dispersed particles. Solid 
line represents Equation 21 and broken line, Equation 16. 

crack and using the values of fracture toughness 
and flexural strength listed in Table II, the critical 
crack sizes are calculated from Equation 22 for 
the glasses under consideration. The results are 
shown in Table IV. This table suggests that the 
present dispersed fine particles being considered 
"penetrable" have no effect on the critical crack 
size, although they can influence the fracture 
surface energies. Thus, the strength and fracture 
toughness in the present type of  composites vary 
in parallel with volume fraction of  dispersed 
particles under the same testing conditions. 

4.2.3. Glasses consisting of  B203-rich 
particles in a PbO-rich matrix 

As shown in Fig. 10b, the fracture path in these 
two-phase composites is considered to circumvent 
the particles. It is then expected that the observed 
increase in fracture surface energy with increasing 
second-phase particles can be explained by the 
application of the Lange-Evans theory [1,2] .  

T A B L E I V Calculated critical crack size for glasses 
consisting of PbO-rich particles/B2Oa-rich matrix 

PbO (wt  %) V o l u m e  Dispersed  Ca lcu la t ed  
f r ac t i on  o f  pa r t i c le  cr i t ica l  

dispersed size crack size 
phase D(/lm) a (#m) 

5 0.05 - 50 
10 0.13 0.17 45 
13 0.18 0.18 38 
17 0.25 0.20 45 
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DIX 
Figure 12 Fracture surface energy for glasses consisting 
of B2Oa-rich particles/PbO-rich matrix as a function of 
the ratio of the particle size to the particle spacing, 
D/X. Solid curve represents the line tension contribution 
calculated from Evans' theory [2]. 

Lange [1] found that the fracture surface 
energy is linearly related to the reciprocal of  the 
mean free path between dispersed particles 

T 
r = r m + ~ - ,  ( 2 3 )  

where r is the line tension of  the crack front. 
Evans [2] elaborated Lange's theory and calculated 
the line tension contribution to the fracture sur- 
face energy assuming "impenetrable" particles. In 
Fig. 12, the fracture surface energies for glasses con- 
sisting of  B2Oa-rich particles/PbO-rich matrix are 
plotted against the ratio of  the particle size to the 
particle spacing, D/X where X = 2D(1 - - r  
for randomly dispersed spherical particles [12]. 
The theorectical line tension contribution calcu- 
lated from Evan's theory is drawn in Fig. 12 by 
a solid curve. It is found that the measured frac- 
ture surface energy varies with D/X in a similar 
manner to the predicted line tension contribution. 
This indicates that the second-phase particles act 
as "impenetrable" obstacles and the line tension 
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T A B L E V Calculated critical crack size for glasses con- 
sisting of B203-rich particles/PbO-rich matrix 

PbO (wt %) Volume Dispersed Calculated 
fraction of particle critical 
dispersed . size crack size 
phase D (/lm) a (#m) 

45* - - 98 
40 0.16 0.40 149 
36 0.29 0.35 114 
32 0.41 0.53 198 

*Homogeneous glass composition which lies just outside 
the miscibility gap. 

may be the major contribution to the increase in 
the fracture surface energy with second-phase 
particles. 

The critical crack sizes for the present two- 
phase glasses were calculated in a similar manner 
to the preceding section and the results are listed 
in Table V. Taking into account the fact that a 
large amount of scatter must be necessarily 
included in each of the calculated crack sizes, the 
critical crack size should be regarded invariant 
with volume fraction of dispersed B203-rich par- 
ticles. The dispersed particle size is found to be 
much smaller than the crack size in the homo- 
genous glass, and the impenetrable second-phase 
dispersion appears to have no effect on the crack 
size. This suggests that the crack size in particulate 
composites is invariant with their microstructure 
regardless of the "particle impenetrability", when 
the critical crack size in the host glass without a 
dispersed phase is much larger than the particle 
size. The crack size will be related to the com- 
posite microstructure only when the particle size 
is comparable to the average crack size in the host 
glass. It is then concluded that the critical crack 
size in the present glasses remains constant as long 
as the testing condition is identical, and observed 
increases in strength result entirely from increases 
in fracture toughness. 

5. Su mmary 
The present study was concerned with the fracture 
behaviour of two-phase brittle matrix/brittle par- 
ticle composites. Flexural strength, fracture tough- 
ness and fracture surface energy were measured for 
lead borate glasses whose compositions lie in the 
immiscible region of the P b O - B 2 0  3 system. The 
microstructural characterization indicated that the 
glasses under study were typical particulate com- 
posites consisting of two immiscible phases, 
B2 O3-rich and Pb O-rich phases. The microstructure 
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consists of PbO-rich particles/B203-rich matrix for 
glass compositions on the B203-rich side of the 
miscibility gap, and conversely B203-rich particles/ 
PbO-rich matrix for glass compositions on the 
PbO-rich side of the gap. 

After discussing localized stress fields generated 
around and within particles due to elastic and 
thermal expansion mismatch and their effects on 
the fracture path in brittle composites, mechanical 
data obtained for the present two types of particu- 
late composites were interpreted in terms of the 
properties and amount of each phase and the 
microstructural effects. An expression was formu- 
lated for the fracture surface energy of a brittle 
composite containing "penetrable" particles. This 
expression could well explain the decrease in 
fracture surface energy with increasing second- 
phase particles observed for the composite system 
consisting of PbO-rich particles/B203-rich matrix. 
On the other hand, the Lange-Evans theory 
explained well the observed increase in fracture 
surface energy for the composite system consisting 
of B203-rich particles/PbO-rich matrix, in which 
particles can be considered "impenetrable". 

It was concluded that, when the critical crack 
size in the non-dispersed host glass is much larger 
than the particle size, the crack size in particulate 
composites is invariant with microstructure 
regardless of the "particle impenetrability", and 
that the strength is controlled by the fracture 
toughness, i.e. the resistance of the material to 
crack propagation. 
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